
Kafka: 
HOW TO 
DELETE 
DATA



IMPORTANT THINGS TO KNOW ABOUT:
KAFKA DATA DELETION

- Kafka is able to delete old messages from a topic. 
- The Kafka design does not include targeted deletion of single 

messages.
- Targeted deletion of single messages should be handled outside 

of Kafka (on consumer side). 
- However, Kafka provides mechanisms to support some control 

over the process of data deletion.

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

2



IMPORTANT THINGS TO KNOW ABOUT:
KAFKA DATA DELETION

- In detail, these options are quite complicated to understand. 
- There are different configurations that will affect each other. 
- Let's try to understand what happens under the hood...

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

3



KAFKA 
CLEANUP POLICY01

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

4



KAFKA CLEANUP POLICY

§ The concept of deleting data from Kafka is called 
„cleanup policy“. 

§ The cleanup policy determines how Kafka handles the 
removal of messages from the log segments on disk.

§ There are two different approaches of handling such data:
§ Delete
§ Compact
§ or both at the same time.

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

5



KAFKA CLEANUP POLICY – DELETE

§ When the „Delete“ cleanup policy is set for a topic, Kafka 
will delete messages based on their individual retention 
time or log size. 

§ The default setting is time-tiered compaction with a 
retention period of 7 days (inherited from the Broker 
default). 

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

6



KAFKA CLEANUP POLICY – DELETE (SIZE)

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

7

§ When using size-tiered, the log.retention.bytes configuration 
determines the maximum size in bytes that a Kafka topic's log can 
grow before old log segments start to be deleted. 

§ It is applied at a per-partition level.



KAFKA CLEANUP POLICY – DELETE (SIZE)

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

8

§ By default, log.retention.bytes is turned off.
§ You can combine time-tiered and size-tiered configurations.
§ In such a case, Kafka will use the first trigger point from either 

limit.



KAFKA CLEANUP POLICY – COMPACT

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

9

§ Compaction ensures that the log retains a compacted 
representation for each Key.

§ Only the latest value for each key is preserved.
§ It is applied on a per partition level.



©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

10



A TOPIC AFTER COMPACTION

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

11



KAFKA CLEANUP POLICY – DELETE & COMPACT

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

12

§ You can combine the DELETE & COMPACT configurations. 
§ In such a case, Kafka will use both policies at the same time, e.g., 

keeping a message per key as long as the retention period has not 
expired. 

§ When the retention period has been reached, a message can be 
deleted, even if there is no other message with the same key.



KAFKA TOMBSTONE02

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

13



KAFKA – TOMBSTONE EVENT

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

14

§ A message with a key and a null payload is called a TOMBSTONE.
§ It will be treated as a delete-request for a messages with the same key.
§ This delete marker will cause any prior message with that key to be 

removed.
§ The point in time at which tombstones are no longer retained is marked 

as the delete retention point.



KAFKA – TOMBSTONE EVENT

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

15

§ The consumer sees all tombstones as long as it reaches the head 
of a log within a period less than the topic configurated 
delete.retention.ms (the default is 24 hours).

§ Compaction is performed periodically in the background, but it is 
not 100% predictable.
§ The number of cleaner threads are configurable through 

log.cleaner.threads configuration (default = 1).
§ The cleaner thread chooses the log with the highest dirty ratio first 
à dirty ratio = number of bytes in the head / total number of 
bytes in the log (tail + head).



KAFKA – TOMBSTONE EVENT

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

16

§ Also consider: min.cleanable.dirty.ratio (default = 0,5)
§ This threshold also influences compaction. Meaning a topic/partition file 

will only be compacted if at least 50% of its entries are dirty. Anything 
below that, the thread does not perform compaction.

§ Topic config min.compaction.lag.ms (default = 0) defines the 
minimum time period that must pass, before a message can be 
compacted.

§ To set delay to start compacting records after they are written use 
topic config log.cleaner.min.compaction.lag.ms (default = 0) . The 
setting gives consumers time to get every record.



KAFKA SEGMENTS03

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

17



KAFKA – ON DISK

§ My messages reached the end of their retention period, 
but they are still there? Why? 

§ Kafka does not organize or store single messages on disk. 
Instead, messages are collected and stored in what is 
called "segment" files. 
§ Segments are specific to each partition, and therefore, 

each topic.

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

18



KAFKA – ON DISK

§ Data will always be deleted in bulk, defined by the size of 
the segment.

§ You can control the segment creation by using some 
Kafka configuration parameters (on topic level):
§ The maximum age of messages in a segment file 

(segment.ms – default is 7 days).
§ The maximum size of a segment file (segment.bytes).

§ If either of these is exceeded, the broker will start a new 
segment. ©

 D
ee

ps
ho

re
 G

m
bH

 · 2
02

3

19



KAFKA – ON DISK

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

20

§ Segments will be deleted only if every single message is 
deletable (expired retention or tombstone event).



KAFKA – ON DISK

§ When data seems to live forever, a known and sophisticated 
error might be on the producer side.
§ CreateTime is the default timestamp assigned to a message 

by the producer. 
§ Kafka uses log.retention.hours (default is 168 hours) 

together with CreateTime to determine when to delete a log 
file. A log file will only be deleted if the latest timestamp of 
any record in that log file is older than 168 hours. 

§ If a producer sends a message with an incorrect timestamp 
(e.g., 01.01.2100), the segment and its messages will not be 
deleted within a reasonable timeframe.

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

21



TAKE AWAY…04

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

22



TAKE AWAY…

§ Kafka offers no functionality to delete single messages. 
§ The lowest level of control for deletion is on a per-key basis 

(aka tombstone). 
§ Kafka will not delete a message immediately when it is "ready to 

delete." 
§ It is not possible to predict the exact point in time since deletion is a 

background job. 
§ Triggering the job depends on different configurations. 
§ Even if the job is running, it might skip segments due to other topic 

configurations. 
§ You should never build a business case that relies on the physical 

deletion of data from Kafka.

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

23



CONTACT
Deepshore GmbH · Van-der-Smissen-Straße 9, 22767 Hamburg
Telefon +49 40 46664-296 · Fax +49 40 46664-299
E-Mail info@deepshore.de · www.deepshore.de 

Who said: 
DELETING 
DATA FROM 
KAFKA IS 
EASY?

mailto:info@deepshore.de
http://www.deepshore.de/

