
Kafka:
SCHEMA
EVOLUTION

The general Kafka design puts a lot of responsibility
to its producers, but also to its consumers.

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

2

IMPORTANT THINGS TO KNOW ABOUT:
SCHEMA EVOLUTION

Let´s understand, …

§ Why schemas in Kafka?
§ How exactly does it work?
§ How can schemas be changed?

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

3

WHY SCHEMAS
IN KAFKA?01

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

4

KAFKA …

§ does not care about the data structure of messages since it…
§ works with a serialized byte stream – NO STRUCTURE!!!
§ Producers and Consumers need to somehow align on: how to

serialize/deserialize data and how to interpret such data.
§ Without a central Schema, they need to talk to each other.
§ Technical producers and consumers must always be compatible!
§ Without a central schema, any change in the data structure

would lead to a simultaneous change of all producers &
consumers; old messages could not be read anymore
(or you run old & new versions simultaneously) ©

 D
ee

ps
ho

re
 G

m
bH

 · 2
02

3

5

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

6

KAFKA (CONFLUENT) SCHEMAS…

§ are something like a message-data-catalog.
§ When well defined, they can explain the structure and business

aspects of message data.
§ idealy, decouples producer from any consumer.
§ are hosted in a central registry.
§ is not a Kafka-standard but part of the Confluent distribution!

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

7

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

8

HOW EXACTLY
DOES IT WORK?02

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

9

HOW DOES A PRODUCER SERIALIZE DATA?
HOW DOES A CONSUMER DESERIALIZE DATA?

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
1

10

Format Producer Consumer

Avro io.confluent.kafka.serializers.KafkaAvroSerializer io.confluent.kafka.serializers.KafkaAvroDeseria
lizer

ProtoBuf io.confluent.kafka.serializers.protobuf.KafkaProtob
ufSerializer

io.confluent.kafka.serializers.protobuf.KafkaPr
otobufDeserializer

JSON
Schema

io.confluent.kafka.serializers.json.KafkaJsonSchem
aSerializer

io.confluent.kafka.serializers.json.KafkaJsonSc
hemaDeserializer

THE „WIRE FORMAT“…
§ … is what Confluent-Avro-(de)serilalizer uses under the hood…
§ „Currently supported primitive types are null, Boolean, Integer, Long, Float, Double,

String, byte[], and complex type of IndexedRecord. Sending data of other types to
KafkaAvroSerializer will cause a SerializationException.“ ©Confluent

§ „(…) it is (…) important that the physical byte format of serialized data does not change
unexpectedly (…). Even the smallest modification can result in records with the same
logical key being routed to different partitions (…).“ ©Confluent

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

11

Bytes Area Description

0 Magic Byte Confluent serialization format version number;
currently always 0.

1-4 Schema ID 4-byte schema ID as returned by the Schema
Registry

5-… Data

Avro serialized data in Avro’s binary encoding.
The only exception is raw bytes, which will be
written directly without any special Avro
encoding.

HOW CONFLUENT USES AVRO-(SCHEMAS) …

§ Of course one can use any homemade (de-)serializer, but be carefull… data pipelines
might explode due to incompatible plug-ins!

§ The moment someone uses KafkaAvroSerializer, the producer needs to connect to a
Schema Registry…mandatory parameter: schema.registry.url
(or you build something else like useLocalSchemaFile)

§ In general, a SerializationException may occur during the „send call“ from a producer, if
the data is not well formed.

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

12

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

13

HOW CAN SCHEMAS
BE CHANGED?03

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

14

THE WORLD WILL MOVE ON –
HOW SCHEMAS CAN BE CHANGED …

§ Confluent Kafka supports schema evolution.
§ You can work with different versions of the same schema at the same time.
§ Do not mix that up with changes in a Topic configuration!
§ There is no versioning for Topic configuration.
§ Here is what the Confluent distribution delivers out of the box…

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

15

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

16

Compatibility Type Changes allowed Check against
which schemas Upgrade first

BACKWARD •Delete fields
•Add optional fields Last version Consumers

BACKWARD_TRANSITIVE •Delete fields
•Add optional fields

All previous
versions Consumers

FORWARD •Add fields
•Delete optional fields Last version Producers

FORWARD_TRANSITIVE •Add fields
•Delete optional fields

All previous
versions Producers

FULL •Add optional fields
•Delete optional fields Last version Any order

FULL_TRANSITIVE •Add optional fields
•Delete optional fields

All previous
versions Any order

NONE •All changes are
accepted

Compatibility
checking disabled Depends

Consumer oriented

Producer
oriented

HOW CONFLUENT USES (AVRO-)SCHEMAS …

§ The registry will protect a schema from prohibited changes
(according to the chosen compatibility mode).

§ But … there is no standard/default gatekeeping process preventing a
producer to send schema incompatible data …

§ … it is possible to enable a Schema Validation in Confluent-Kafka…
§ … but this will cost performance!
§ The general Kafka design puts a lot of responsibility to it producers, but

also to its consumers.

©
 D

ee
ps

ho
re

 G
m

bH
 · 2

02
3

17

CONTACT
Deepshore GmbH · Van-der-Smissen-Straße 9, 22767 Hamburg
Telefon +49 40 46664-296 · Fax +49 40 46664-299
E-Mail info@deepshore.de · www.deepshore.de

Who said:
SCHEMA
EVOLUTION
IS EASY?

mailto:info@deepshore.de
http://www.deepshore.de/

